Influence of fibre-matrix interface on the fracture behaviour of carbon-carbon composites
نویسندگان
چکیده
This paper studies the fracture behaviour of unidirectional carbon fibre reinforced carbon matrix composites and its relation with the type of fibre-matrix interface developed in the composite. Model unidirectional carbon-carbon composites were prepared using the same type of fibre and different pitches as matrix precursors. These included both commercial pitches and synthesized in the laboratory ones. The chemical composition of the matrix precursor determined the type of microstructure developed in the composite, this microstructure seems to govern the fibre-matrix bonding and in turn controls the fracture behaviour of the composite. In general, a matrix texture of mosaic (small size) seems to yield a good fibre-matrix bonding, making the materials to have higher interlaminar shear strength but having at the same time brittle fracture behaviour. On the other hand, composites where larger textures were developed in the matrix seem to have a poorer fibre-matrix bonding. This made the composites to have lower strength, but it allowed debonding of fibre and matrix during fracture. As a result, these materials showed pseudo-plastic failure behaviour. Other examples of both types of fracture behaviour associated with the change in microstructure and fibre-matrix interface are discussed.
منابع مشابه
Investigation of Crack Resistance in Single Walled Carbon Nanotube Reinforced Polymer Composites Based on FEM
Carbon nanotube (CNT) is considered as a new generation of material possessing superior mechanical, thermal and electrical properties. The applications of CNT, especially in composite materials, i.e. carbon nanotube reinforced polymer have received great attention and interest in recent years. To characterize the influence of CNT on the stress intensity factor of nanocomposites, three fracture ...
متن کاملInvestigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach
In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...
متن کاملInfluence of titanium carbide on the interlaminar shear strength of carbon fibre laminate composites
The potential use of carbon fibre laminate composites is limited by the weak out-ofplane properties, especially delamination resistance. The effect of incorporating titanium carbide to the mesophase pitch matrix precursor of carbon fibre laminate composites on interlaminar shear strength is studied both on carbonised and graphitised composites. The presence of titanium carbide modifies the opti...
متن کاملEffects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties
In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...
متن کاملMechanical Characterization of Glass-Basalt-Carbon/Polyester Hybrid Composites
Influence of the stacking sequences of hybrid composites on the tensile strength, flexural strength, inter-laminar shear strength (ILSS) and impact energy was investigated. The hybrid glass-basalt-carbon/polyester composite laminates were processed by hand lay-up procedure at room temperature. The fracture surface of the composite laminates after the tension and flexural test was examined by sc...
متن کامل